25,128 research outputs found

    A multipath analysis of biswapped networks.

    Get PDF
    Biswapped networks of the form Bsw(G)Bsw(G) have recently been proposed as interconnection networks to be implemented as optical transpose interconnection systems. We provide a systematic construction of κ+1\kappa+1 vertex-disjoint paths joining any two distinct vertices in Bsw(G)Bsw(G), where κ1\kappa\geq 1 is the connectivity of GG. In doing so, we obtain an upper bound of max{2Δ(G)+5,Δκ(G)+Δ(G)+2}\max\{2\Delta(G)+5,\Delta_\kappa(G)+\Delta(G)+2\} on the (κ+1)(\kappa+1)-diameter of Bsw(G)Bsw(G), where Δ(G)\Delta(G) is the diameter of GG and Δκ(G)\Delta_\kappa(G) the κ\kappa-diameter. Suppose that we have a deterministic multipath source routing algorithm in an interconnection network GG that finds κ\kappa mutually vertex-disjoint paths in GG joining any 22 distinct vertices and does this in time polynomial in Δκ(G)\Delta_\kappa(G), Δ(G)\Delta(G) and κ\kappa (and independently of the number of vertices of GG). Our constructions yield an analogous deterministic multipath source routing algorithm in the interconnection network Bsw(G)Bsw(G) that finds κ+1\kappa+1 mutually vertex-disjoint paths joining any 22 distinct vertices in Bsw(G)Bsw(G) so that these paths all have length bounded as above. Moreover, our algorithm has time complexity polynomial in Δκ(G)\Delta_\kappa(G), Δ(G)\Delta(G) and κ\kappa. We also show that if GG is Hamiltonian then Bsw(G)Bsw(G) is Hamiltonian, and that if GG is a Cayley graph then Bsw(G)Bsw(G) is a Cayley graph

    X-ray observations of the Ultraluminous infrared galaxy IRAS19254-7245 (The Superantennae)

    Get PDF
    We present ROSAT HRI and ASCA observations of the well known ULIRG IRAS19254-7245 (the Superantennae). The object is not detected by ROSAT yielding a 3\sigma upper limit of L_x ~8x10^{41} erg/s in the 0.1-2 keV band. However, we obtain a clear detection by ASCA yielding a luminosity in the 2-10 keV band of 2 \times 10^{42}erg/s. Its X-ray spectrum is very hard, equivalent to a photon index of Gamma=1.0+-0.35. We therefore, attempt to model the X-ray data with a "scatterer" model in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f, is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column of 2x10^{23}cm^{-2} for a power-law photon index of Gamma=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (~20%). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton thick torus (N_H>10^{24} cm^{-2}) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90%) to the equivalent width of the 6.4 keV line is high (~3 keV). All the above suggest that most of the X-ray emission originates in an highly obscured Seyfert-2 nucleus.Comment: 5 pages, 1 figure, 1 table, To appear in MNRA

    ROSAT observations of two 'cooling flow' EMSS Galaxies

    Full text link
    We present ROSAT observations of two luminous L~10^44 erg/s EMSS galaxies, MS1019+5139 and MS1209+3917, previously classified as 'cooling flow' galaxies. MS1019+5139 does not appear to be spatially extended (<13 kpc) while its spectrum is well fit by a power law with Gamma = 1.73 +0.19-0.18; X-ray variability on a timescale of ~ years is also clearly detected. MS1209+3917 shows no evidence of spatial extension (<50 kpc) but it shows variability, while its spectrum can be fit with thermal bremsstrahlung emission (kT=1.8 +0.9-0.4 keV) or a power law model (Gamma = 2.50 +0.44-0.42, but with excess photoelectric absorption above the Galactic value). All the above argue against thermal emission from a group of galaxies or a galaxy but in favour of an AGN (possibly BL Lac) interpretation. We conclude that no 'normal' galaxies with high X-ray luminosities have yet been detected in the EMSS survey that could be significant contributors to the X-ray background.Comment: 6 pages, LaTeX, 6 postscript figures included, to appear in MNRA

    A Renormalization Group Improved Calculation of Top Quark Production near Threshold

    Get PDF
    The top quark cross section close to threshold in e+ee^+e^- annihilation is computed including the summation of logarithms of the velocity at next-to-next-to-leading-logarithmic order in QCD. The remaining theoretical uncertainty in the normalization of the total cross section is at the few percent level, an order of magnitude smaller than in previous next-to-next-to-leading order calculations. This uncertainty is smaller than the effects of a light standard model Higgs boson.Comment: changed figures, added reference

    Local-time asymmetries in the Venus thermosphere

    Get PDF
    Our current understanding of the global structure and dynamics of the Venus thermosphere is embodied in models such as the Venus Thermospheric General Circulation Model (VTGCM) and empirical composition models such as VIRA and VTS3. We have completed an analysis of ultraviolet images of Venus at 130 nm acquired by the Pioneer Venus Orbiter Ultraviolet Spectrometer (PVOUVS). We have examined 97 images spanning the 10-year period between 1980 and 1990, and have developed a technique for global radiative transfer modeling with which we create synthetic models of each image analyzed. We have developed a hypothesis for understanding the persistent local-time asymmetry observed as a signature of vertically propagating internal gravity waves interacting with the thermospheric SS-AS circulation. This hypothesis is presented

    Exploring Contractor Renormalization: Tests on the 2-D Heisenberg Antiferromagnet and Some New Perspectives

    Full text link
    Contractor Renormalization (CORE) is a numerical renormalization method for Hamiltonian systems that has found applications in particle and condensed matter physics. There have been few studies, however, on further understanding of what exactly it does and its convergence properties. The current work has two main objectives. First, we wish to investigate the convergence of the cluster expansion for a two-dimensional Heisenberg Antiferromagnet(HAF). This is important because the linked cluster expansion used to evaluate this formula non-perturbatively is not controlled by a small parameter. Here we present a study of three different blocking schemes which reveals some surprises and in particular, leads us to suggest a scheme for defining successive terms in the cluster expansion. Our second goal is to present some new perspectives on CORE in light of recent developments to make it accessible to more researchers, including those in Quantum Information Science. We make some comparison to entanglement-based approaches and discuss how it may be possible to improve or generalize the method.Comment: Completely revised version accepted by Phy Rev B; 13 pages with added material on entropy in COR

    The XMM-Newton spectral-fit database

    Full text link
    The XMM-Newton spectral-fit database is an ongoing ESA funded project aimed to construct a catalogue of spectral-fitting results for all the sources within the XMM-Newton serendipitous source catalogue for which spectral data products have been pipeline-extracted (~ 120,000 X-ray source detections). The fundamental goal of this project is to provide the astronomical community with a tool to construct large and representative samples of X-ray sources by allowing source selection according to spectral properties.Comment: Conference proceedings of IAU Symposium 304: Multiwavelength AGN surveys and studie

    Pioneer Venus Orbiter Ultraviolet Spectrometer: Operations and Data Analysis

    Get PDF
    The Ultraviolet Spectrometer investigation on the Pioneer Venus Orbiter mission was extremely successful. The instrument was designed, built and tested at CU/LASP and delivered on time and within budget. The spacecraft and its instruments were required to operate for 243 days in Venus orbit. OUVS operated successfully for a further 13 years with only minor problems. The major scientific results listed above that deal with Venus were all unexpected and significant discoveries. The Comet Halley observations came about because of a favorable alignment of Halley, the Sun, and Venus, and were an important contribution to the international study of this comet. The scientific results of the OUVS investigation are to be found in the 41 papers listed in section 4 below. OUVS data provided material for 6 PhD and one MS dissertations, listed in section 5 below
    corecore